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Polymer model with annealed dilution on the square lattice: A transfer-matrix study
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We study a lattice model for equilibrium polymerization with annealed dilution. The model con-
sidered is an Ising lattice-gas monomer-solvent system where the polymers are represented by mutually
and self-avoiding walks constrained to pass through sites occupied by monomers. Numerical results on
the square lattice using transfer-matrix techniques and finite-size scaling are reported. The values ob-
tained for the tricitical exponent v, are in agreement with the tricritical Ising exponent (8/11) for high
values of the monomer fugacity, but the accuracy we obtained does not rule out the possibility of v, be-
ing equal to the critical self-avoiding-walk (SAW) value 3/4. Our results indicate that a crossover occurs
in the tricritical behavior of the model. This crossover corroborates the equivalence between a particu-
lar limit of the diluted model and the self-attracting polymer system proposed recently.

PACS number(s): 64.60.Kw, 05.50.+q

I. INTRODUCTION

The thermodynamic properties of equilibrium poly-
merization in a solvent are often studied through models
where the polymeric chains are modeled as self- and mu-
tually avoiding walks on a lattice [1]. In a good solvent,
the excluded-volume interactions between monomers in-
corporated into polymeric chains dominate, so that the
exponent v (which defines how the root-mean-square ra-
dius of the chain scales with respect to the number of
monomers in the chain) is equal to the self-avoiding walk
(SAW) value 3/4 for models on two-dimensional lattices.
On the other hand, when the monomers are in a poor sol-
vent, a collapse of the polymer chains may occur, so that
the polymers will be in a more compact configuration,
and the exponent v changes to the lower random-walk
value 1/2.

There are (at least) two different lattice models for
studying the collapse transition of polymers. The first
one is the so-called self-attracting self-avoiding-walk
model (SASAW) [1,2], and the second one is the SAW
model in the presence of annealed vacancies [3]. In the
SASAW model, attractive interactions between mono-
mers in nearest-neighbor sites on the lattice which are not
consecutive sites of the same chain are included to simu-
late the interactions between the polymer and the solvent
molecules. These interactions, identified with the short-
range van der Waals forces, become important as the
temperature is lowered, and a collapse transition occurs
at the so-called ® temperature [4]. This transition is
identified as a tricritical point [1,2], but recently some
doubts were presented in the literature related to the mul-
ticritical nature of the ® point for models on two-
dimensional lattices [5].

The model of equilibrium polymerization with an-
nealed vacancies was proposed some time ago by Wheeler
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and Pfeuty [3], based on a chemical equilibrium model
proposed earlier for the study of the polymerization of
sulfur in organic solvents [6]. In this model the lattice
sites may be occupied by monomer or by solvent mole-
cules, the monomers may polymerize forming chains, and
the interactions between molecules are modeled as an Is-
ing lattice gas with first-neighbor interactions. Thus, the
model is equivalent to the SAW problem on the lattice
with correlated annealed vacancies. Mean-field calcula-
tions [3], Bethe lattice calculations [7], and some prelimi-
nary results on the square lattice [8] show that a collapse
transition appears as a tricritical line in the temperature-
lattice gas fugacity plane.

The diluted model has been recently related to the
model of interacting polymers or SASAW [9-11]. In
these references, it is argued that the diluted-polymer
model may reproduce the self-attracting polymer system
in a certain limit. The equivalence between both models
in this particular limit was obtained analytically on the
Bethe lattice [11], and some preliminary results for the
model on the square lattice using finite-size scaling were
published recently [8]. The equivalence between both
models has been put in doubt by the argument that the
tricritical behavior of the diluted-polymer system should
be determined by the embedding Ising lattice-gas system,
which has different tricritical exponents than the ® point
of the SASAW model [12,13]. This point was also dis-
cussed by Seno, Stella, and Vanderzande [14], who per-
formed simulations for the diluted-polymer model which
resulted in pure SAW critical behavior simulations for
the diluted-polymer model which results in pure SAW
critical behavior at the critical Ising point on the square
lattice, e.g., v,=3/4, excluding the value v,=8/11,
presented as the exact value in Ref. [13].

In the present work two different transfer-matrix cal-
culations, using the phenomenological renormalization
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group (PRG) and the first-order phase-transition method
(FOM), are used to calculate the tricritical behavior of
the diluted-polymer system and to study the self-
attracting polymer limit. The accuracy of our results is
good enough to show the crossover of the tricritical
behavior of the model as the limit is approached where it
is equivalent to the SASAW model, but we were unable
to distinguish between both values proposed in the litera-
ture for the tricritical exponent v, of the diluted-polymer
model.

This paper is organized as follows. In Sec. II the mod-
el is defined. In section III, the methods we used to study
the thermodynamic properties of the model on the square
lattice are presented. We performed transfer-matrix cal-
culations for the model defined on strips of finite width L
and then used finite-size-scaling methods to extrapolate
the results to the two-dimensional limit L — o. Two
different extrapolation methods were used: in Sec. III A
PRG calculations are shown, and in Sec. III B the FOM
is used. Finally, in Sec. IV, our results are discussed.

II. DEFINITION OF THE MODEL

In the model of equilibrium polymerization with an-
nealed dilution each site of the lattice is occupied either
by a monomer or by a solvent molecule. This may be de-
scribed by associating an Ising lattice-gas variable u; to
each lattice site i such that

1 if site i is occupied by a monomer
Hi= o if site i is occupied by a solvent molecule .

The fugacity of a solvent molecule will be considered
equal to 1, and a monomer has fugacity z. First-neighbor
interactions are considered between molecules on the lat-
tice. Without loss of generality, we may set the
Boltzmann factor of the solvent-solvent and the solvent-
monomer interactions equal to 1, whereas the monomer-
solvent interactions will have a factor y associated to
them. The polymers will be modeled as SAW’s con-
strained to pass through sites occupied by monomers.
The activity of a polymer bond is x and usually an activi-
ty K, is associated to each chain. We will be interested
in the limit K| —0, where a vanishing density of chains is
present on the lattice and therefore in the thermodynam-
ic limit only chains with an infinite number of monomers
are considered. This model is equivalent to the n-vector
model of magnetism with annealed dilution in the formal
limit n —0 [3].

For calculations on one-dimensional strips of width L
using transfer-matrix techniques, it is convenient to im-
pose the existence of only one self-avoiding walk, whose
endpoints are confined to the boundary [8,15-17]. This
is equivalent to make the external field equal to zero in
the magnetic analogy and break the symmetry on the
boundary. Then, the (semi)grand-partition function for a
chain on a lattice of N sites is

& I )) mfu )
Yyix,p,2)=3 3 x"y i) o) Cy(n,{p:}), (1
n=0 {u}

where n is the number of bonds in the chain, / is the num-

ber of first-neighbor monomer-monomer pairs, and m is
the number of monomers on the lattice. For a given dis-
tribution {u;}, I and m are given by

l({ui})=<2)ufu,~, m({p =3 p; - (2)
ij i

The number of configurations on the lattice of N sites
with n polymer bonds and distribution {y;} is given by

I'y(n,{u;}). The temperature of the model will be
defined by
1
= , B=—. 3)
y=exp(B), B T (3)

The partition function for the interacting polymer
model (SASAW) may be obtained from the partition
function of the diluted model Eq. (1) in the limit z—0,
x— o0, xz=const [9,11]. In this limit the only nonzero
terms in the sum are those configurations where all the
sites which are not incorporated into the chain are sol-
vent molecules. With this constraint we obtain from Eq.
(2), for the nonzero contributions, / =n +k, where n is
the number of polymer bonds defined in Eq. (1) and k is
the number of nearest-neighbor monomers which are not
consecutive on the polymer. Thus, the partition function
may be written as

Yyla,p)=3 a'y*, 4)
SAW

where a=xyz and the sum is over all configurations of
the SAW compatible with the boundary conditions. This
is the partition function of a self-attracting polymer, and
the tricritical point is this model is known as the ® point
[1].

Transfer-matrix methods for strips of finite width with
periodic boundary conditions together with finite-size-
scaling theory are used to study the locus of tricritical
points of the diluted-polymer model on the square lattice.

III. TRANSFER-MATRIX CALCULATIONS

The finite-size-scaling theory [18,19] may be applied to
obtain estimates of the critical behavior of models by
studying their properties on finite lattices and then extra-
polating the results to the thermodynamic limit. The
method is quite powerful to study two-dimensional mod-
els, since it is often possible to calculate the transfer ma-
trix for one-dimensional strips of finite width L, perform-
ing the limit of infinite length of the strip. Defining a
pseudocritical temperature T, for each strip, the finite-
size-scaling properties of physical magnitudes (densities,
correlation length, etc.) allow us to calculate approximate
values for the two-dimensional critical temperature and
critical exponents.

To build the transfer matrix for the diluted-polymer
model, a straightforward generalization of the method
used for the model without dilution [15] is used, includ-
ing the lattice-gas monomer-solvent interaction. In this
case, the nonpolymerized phase corresponds to an Ising
lattice-gas system. Therefore the transfer matrix of this
phase is not the 1X 1 identity matrix as in the pure poly-
mer case [15]. Therefore, the total transfer matrix is
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block-diagonal, where one block is the symmetric
transfer matrix of a Ising lattice gas, and the other block
is the nonsymmetric transfer matrix of one single SAW in
the presence of dilution.

There are several ways to choose a pseudocritical pa-
rameter for a model defined on strips of finite widths. A
useful one, used in a great variety of two-dimensional sys-
tems, is the phenomenological renormalization group
(PRG) [19,20], which has been applied to several polymer
problems [15,16,21]. For pure- or diluted-polymer mod-
els, another natural way of choosing pseudocritical mag-
nitudes exists, since in one dimension the diluted-polymer
model exhibits a first-order phase transition [7,22], which
is expected to occur for any finite strip. It is then possi-
ble to define the pseudocritical field variable T, (the con-
cept of field variable is used here in the general thermo-
dynamic sense) as the exact first-order transition field of
the finite system [8,16,17]. This was called the first-order
transition method (FOM). We applied both methods to
the diluted-polymer system on a square lattice. The
boundary conditions for the strips were chosen to be
periodic in the transverse direction and free in the longi-
tudinal direction. The thermodynamic limit is taken let-
ting the length of the strip grow to infinity with the width
L fixed.

The number of possible configurations of the system,
equal to the size of the transfer matrix, grows consider-
ably as the width L of the strip is increased. The effective
size of the matrix may be reduced using the symmetries
of the model. In Table I a comparison of sizes of the
transfer matrix for the nondiluted- and diluted-polymer
problems with periodic boundary conditions, once the
symmetries have been used, is shown. It is expected that
the results of the calculations for the two-dimensional
model are more and more accurate as the width of the
strips considered is increased, since the extrapolations be-
come more confident. The available computational
resources set an upper limit to the widths which may be
treated. Since the transfer matrix grows faster for the
diluted-polymer model than for the nondiluted one, the
target widths considered in the former problem are small-

TABLE 1. A comparison of the sizes of the transfer matrices
for pure- and diluted-polymer models for a strip of width L with
periodic boundary conditions once the symmetries have been
used.

L Pure Diluted
case case

1 1 1
2 1 2
3 2 4
4 3 10
5 7 26
6 13 76
7 32 232
8 70 750
9 179 2494

10 435 8524

11 1142 29 624

er than the ones included in the latter one, and so is the
accuracy of the results.

To obtain an extrapolated value of a quantity we use,
when it is possible, the values obtained from the three
largest L values with the expression [21]

b, =P+ (5)

L’
where ® may be the critical activity, a critical exponent,
etc.; @, is the extrapolated value; 4 and A, are con-
stants. For the diluted-polymer model, the few values ob-
tained and the presence of parity effects forced us to re-
strict ourselves to graphical estimates.

A. Phenomenological renormalization group

In PRG calculations [19,20] we use the correlation
length to define pseudocritical field parameters. The
correlation length for the model on the strips is calculat-
ed using the transfer matrix through the expression

3 1

= 6
"L In(h,, /A,) !

where A, is the largest eigenvalue of the Ising lattice-gas
matrix for the diluted-polymer model, and %,, =1 for the
nondiluted model. In both cases A, is the largest eigen-
value of the polymer transfer matrix. For a critical point,
the renormalization equation is [20]

=1
LI

and the estimate for the critical activity x is a fixed
point of Eq. (7). In order to optimize the method, it is
convenient to choose L'=L +1 [23]. However, for sys-
tems with parity problems (antiferromagnetic models
[24], self-attracting polymers [16,17], polymers with an-
nealed dilution [8], etc.) it is necessary to set L'=L +2.

For estimating the location of tricritical points another
equation is needed, and the PRG method for critical
points may be generalized in different ways. One way is
to consider three widths writing two equations of type
Eq. (7) [25] for strips of widths L, L', and L". Another
one is to use the third largest eigenvalue of the complete
transfer matrix [26]. For the diluted-polymer problem
we found no acceptable solution for these equations.
Something similar happens in the self-attracting polymer
model [16], and therefore we used the same method em-
ployed there for obtaining estimates of the tricritical
points and exponents. So, we calculate the value of
x'B(B,z) given by the PRG equation,

—i—ggx) £0x) ™

(L,L")

%gL(x‘“,B,z)zﬁgLH(x‘“,ﬁ,z), (8)

and estimate the exponent v for each temperature and
monomer activity as

—1__ ln[g’l,+2(x(L)7B9z)/§IL(x(L)’B'Z)]
n In(L +2/L)

-1, 9)

v

where &’ denotes the derivative of & with respect to x.
The use of widths L and L +2 is due to parity reasons.
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Plotting v against 8 at z=z, fixed, as in the cases of
branched polymers [25] and self-interacting polymers
[16], the curves corresponding to different values of L in-
tersect almost at the same point, which is estimated as
the tricritical temperature and the tricritical exponent v,.

This method also has problems for the diluted-polymer
model. A study of the three largest eigenvalues of the
complete transfer matrix over the tricritical line
z =zyc(B) was made. We found that for the inverse tem-
peratures smaller than 3*~1.6 (depending on the value
of L) the second largest eigenvalue does not belong to the
same block of the transfer matrix for the strips of widths
L and L +2. The largest eigenvalue always belongs to
the lattice-gas block, but for the second largest eigenvalue
of the lattice-gas transfer matrix and the largest eigenval-
ue of the polymer transfer matrix we found that

(L +2) (L +2)
Ap >AiG2

(L) (L) (10)
ALG2>A, .

Because of this situation, the method was used only for
the low-temperature region on the tricritical line, where
the second largest eigenvalue is the largest eigenvalue of
the polymer transfer matrix for the two sizes. We believe
that this problem is due to the fact that above the Ising
critical line [B>21In(V2—1)=1.76, z =y ~2 for the Ising
lattice gas on the square lattice], the second largest eigen-
value of the lattice-gas transfer matrix asymptotically de-
generates in the two-dimensional limit.

To study the correspondence between the diluted-
polymer model and the SASAW model in the limit z—0,
we calculate the critical exponent v for small values of z.
In Fig. 1(a) a plot of exponent v against 3 for z,=10"¢
and several values of L is shown. These values, in the
high-temperature zone, are consistent with the exact
value for SAW v=3/4. In the low-temperature zone,
they tend to the collapsed value v=1/2. The curves in-

0.75

0.65

0.55
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i
-

0.45 LINNLINNS S S S S S B B B e e e e e e

6 1.2

FIG. 1. Curves of vvs Bforz=10"%and L =1,...,5. For
comparison with SASAW see Fig. 2 of Ref. [16].

o

tersect almost at the same point which determines the es-
timates for the tricritical values of 8 and v. The limit
z—0 corresponds to the self-attracting problem, and we
observe that this figure is graphically indistinguishable
from Fig. 2 of Ref. [16] for the interacting polymer mod-
el. This confirms numerically the relation between both
models in this limit.

In Fig. 2 the tricritical exponent v, against f3 is plotted.
There, it is observed that the values for v, are compatible
with the exact ®-point tricritical exponent v,=4/7 [27]
for small values of 8, which corresponds with the z—0
limit, and increase rapidly with f3, stabilizing at a value
compatible with the conjectured tricritical exponents
v,=8/11 [13] and v,=3/4 [14] for the diluted-polymer
model. This result indicates a crossover in the tricritical
behavior of the diluted-polymer system, as the limit
where the model is equivalent the SASAW model is ap-
proached. As was stated above, due to compositional re-
strictions the largest width we considered for the strips
was L =7. So, the curve labeled by 3 in Fig. 2 represents
the estimates for v, obtained from the intersection of the
estimates for v obtained from strips of widths L =3,
L'=5,and L"”=17. It is clear in the figure that the accu-
racy of our calculations is insufficient to distinguish be-
tween both conjectured values for v,, but, on the other
side, the crossover to the ®@-point behavior is clearly visi-
ble. Also, the widths we were able to consider are not
high enough to allow an extrapolation of the estimates
for v, through Eq. (5).

B. First-order phase-transition method

In this case, the pseudocritical parameter is calculated
as the exact first-order critical parameter for a finite strip,
that is, x ©)(B,z) is given by the condition

3/ —
0.74

8/11 —

1%
to.64

0.59

4/7 —

A I A A A A S A A ST A AN ST A AT S A S S G WAL B A W

—
0.54 T T

0.60 0.80 1.00 1.20 1.40 1.60

g

FIG. 2. Estimates for the tricritical exponent v, against 3 for
L=1,2,3 using the PRG. The values conjectured to be exact
for the ® point (4/7) and for nonzero values of z (8/11 or 3/4)
are indicated by arrows.
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AP (xP,B,z)=Ad(B,2) , (11)

where k;,L and A4 are the largest eigenvalues of the po-
lymer block of the transfer matrix and the lattice-gas
block, respectively. Unlike for the PRG calculations, we
had no numerical problems using the FOM at any tem-
perature.

The polymer density p of the model defined on a strip
of finite width L may be calculated using Eq. (1):

l PR
T’wNa

In the transfer-matrix formulation, it is given by

PL(X,)’, ) [YN( ’yaZ)] . (12)

0, x<x'
prx,y,z)=1 x O0Ap
LA, ox’

x>x'P

To allow a comparison with phenomenological renormal-
ization, this method was applied to the nondiluted case
(z— ). In this case, the value of the polymer activity at
the first-order phase-transition point is given by
Ap(xH)=1, where A; is now the largest eigenvalue of
the polymer block. In Fig. 3, the polymer density p; (x)
is plotted against x. At the first-order phase-transition
activity x| the polymer density is not continuous, and
the discontinuity in the density decreases with L, leading
to the extrapolated value p,= —0.005, consistent with
the two-dimensional value p. =0 for a continuous phase
transition. The extrapolating curve for the critical poly-
mer density, calculated using Eq. (5) with the three larg-
est values of L (11, 10, and 9), is also plotted.

The estimates for the critical exponent v are calculated
from the finite-size-scaling form of the polymer density
[25]:

pr(x)~LYY72F((x —x'EHL ') . (14)
1.2

]

4

B L=1
0.8
o]
0.4

1

1 |

4 i

] |
0.0 +—+—r+rr—rr+rrr+rrr—rrrrrrrr

0.0 0.4 0.8 1.2
X
FIG. 3. The polymer density p; vs x for the pure polymer
case for L=1,...,11. The dashed line corresponds to the ex-
trapolating line for the critical density.

Then, since in this case no parity effects were observed,
estimates for v may be obtained using Eq. (14) with sizes
Land L +1:

In[ (xE Dy /p (x )
= PL+1 PL ]+2. (15)
In(L +1/L)

The extrapolation to L-—o gives x,=0.3797,
v=0.7498. These values are very close to the corre-
sponding values obtained using phenomenological renor-
malization in Ref. [15] x,=0.379 05, v=0.7503.

The diluted-polymer system can be studied by this
method using Egs. (11) and (13) to obtain the critical po-
lymer activity x'2(B,z) and the critical density

x'.B,z). In Fig. 4, plots of the critical density as a
function of temperature for two fixed values of the mono-
mer fugacity are shown. In both cases we notice that for
B—0 and for high S the critical density value is the one
obtained for the nondiluted model (characterizing a con-

] (a)
0.95
L=2
O,7—j/
p
05 /)
1//l
]
Y/ L
/ |
] L=7
03 + . EAAAARAAASS AR RS SARRAR RSS!
0.9

-
Il
N

0.7

0.5

(>

L=7
o S —
0.0 0.5 1.0 1.5 2.0 2.5
FIG. 4. p, vs B for z=z, fixed. (a) zo=10">, (b) z,=0.0525.
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tinuous phase transition in the limit L — o). However, it
increases rapidly for intermediate values of S, giving the
idea of a first-order phase-transition zone, limited by two
tricritical points. For high values of z, we found that the
critical density is a constant (equal to the nondiluted
value) as a function of 3.

To estimate the tricritical line and the tricritical ex-
ponent v, we used the finite-size scaling form of the criti-
cal density near a tricritical point [16]:

pu(T)~L' " F(T— Ty )L ") . (16)

Following the arguments of Derrida and Saleur [16], we
studied the behavior of the quantity

_ ll'l[pL +2(X(L +2),3,Z )/pL(x(L),B,Z )]
B In(L +2/L)

(X, (B,2)]7! +2.

(17)

As a consequence of Eq. (16), at a tricritical point X
should be independent of L. To obtain the tricritical line,
we fixed z=z, and the intersection of the curves
X (B,zy) for two consecutive values of L gives an esti-
mate for the tricritical temperature ;(z,) and for the
tricritical exponent

V(tL)(BL)ZO ):XL(BL’ZO) .

The correspondence between the diluted-polymer mod-
el and the self-interacting polymer model in the z—0
limit may be appreciated in Fig. 5, where X; is plotted as
a function of B for several values of L and for
z=z,=10"% The curves are graphically indistinguish-
able from those Fig. 1 of Ref. [16] for the self-attracting
chain confirming numerically, as in the phenomenologi-
cal renormalization calculations, this equivalence. It
should be noted that the curve for L =6 is not present in
Fig. 1 of Ref. [16]. The value obtained for the tricritical
parameters are listed in Table II. In Refs. [16,17], the es-

0.65
N\L=6
0.60 -
Xeo
1 L=1
0.55
0.50 T T
0.5 0.65 0.75 0.85 0.95
FIG.5. X, vsBforz=10"%and L=1,...,6. For compar-

ison with self-attracting polymers, see Fig. 1 of Ref. [16].

TABLE II. Estimates for the tricritical temperature and the
tricritical exponent v, for the ® point for the SASAW obtained
with widths L,L +2,L +4, using the first-order transition
method. The estimates are defined as the intersection points in
the curves in Fig. 5.

L Be Vi

1 0.724 848 0.544 424
2 0.718 547 0.546711
3 0.706 250 0.549030
4 0.689 752 0.556274

timated value v,=0.55 is notably smaller than the con-
jecture for the exact value v,=4/7=0.57. The value for
L =4, ¥/L=%~0.56 obtained in our calculations shows
that the estimate of Refs. [16,17] is too small, and our re-
sults are in better agreement with the result supposed to
be exact [13].

0.75

0.65

0.55

,_
NS N VNN WY SN0 WA T WA AN (NS W YOS WA VU S S T WA DU (RO WY U SO0 S S |

0.45 +r—Vrrrr T T T T T T T T T T T

0

0.75

0.70

0.65

0.55

araaa sl er e by b g aaaatiaagiiaad

0.50 FrrrrrreeTT T

0.0 0.5 1.0 1.5 2.0 2.5

B

FIG. 6. X; vs 8 for z=z, fixed with the same values for z, of
Fig. 4. (a) z,=107%, (b) z,=0.0525.
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0.20 — =

1
1
0.05 %
4
|
i

|

|

|
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! J 3
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FIG. 7. z1c vs B. The curves labeled by a number L are ob-
tained from FOM for strips of width L,L +2,L +4.

In Fig. 6 we plot X; vs B at z=z, fixed, for the same
values of z;, as in Fig. 4. From the intersection of these
curves, it is clear that two tricritical points with different
values of the exponent v, are present.

For each value of z, we obtain two values of the tricrit-
ical inverse temperature ; and for the tricritical ex-
ponent v, With those calculations the tricritical curves
Zpc vs B shown in Fig. 7 were obtained. Estimates of the
tricritical exponent v, were also obtained and they are
shown in Fig. 8.

These results support the same conclusions of Sec.
IIT A that a crossover occurs in the tricritical behavior of
the diluted-polymer model, as the limit in which the
model is equivalent to the SASAW model is approached.

IV. CONCLUSIONS

The model of polymers with annealed dilution is stud-
ied using transfer-matrix methods and finite-size-scaling
arguments. Two different methods were used to define
the pseudocritical parameters for finite strips. Both
methods were compared to similar calculations in the
literature in the pure-polymer limit, and numerically

074 5

8/11-— &
8/1 :

0.69 1 7

o

064 ;

|

)

1 f
0.59 - /H

4/7 —

0 54 T T T e T T T T
0 1 2 4 :

FIG. 8. Estimates for the tricritical exponent v, against 3 us-
ing FOM. As in Fig. 2, the values conjectured to be exact are
indicated by arrows.

identical results were obtained.

Our results indicate that a crossover occurs in the tri-
critical behavior of the diluted-polymer system in the lim-
it z—0, x — o0, xz =const. Figures 2 and 8, obtained by
PRG and FOM, respectively, show that the value of the
tricritical exponent v, is compatible with the tricritical
exponent of the ® point v, =4 /7 for B= B¢, which corre-
sponds to the SASAW limit, and a considerably higher
value of v, is obtained for B> Bg, or equivalently, for
nonzero values of z. The accuracy of our estimates for v,
of the diluted-polymer model is not good enough to dis-
tinguish between both conjectured values present in the
literature, which are v, =8/11 [12,13] and v,=3/4 [14],
identical to the critical value of v for pure SAW’s.
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